Test Paper : III	
Test Subject : PHYSICAL SCIENCE	Test Booklet Serial No. :
	OMR Sheet No.:
Test Subject Code : K-2517	Roll No.
	(Figures as per admission card)
Name & Signature of Invigilator/s	
Signature :	
Name :	
Paper :	III
Subject :	
Time : 2 Hours 30 Minutes	Maximum Marks: 150
Number of Pages in this Booklet : 16	Number of Questions in this Booklet: 75
ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು	Instructions for the Candidates
1. ಈ ಪುಟದ ಮೇಲ್ತುದಿಯಲ್ಲಿ ಒದಗಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ನಿಮ್ಮ ರೋಲ್ ನಂಬರನ್ನು ಬರೆಯಿರಿ.	 Write your roll number in the space provided on the top of this page. This paper consists of seventy five multiple-choice type of questions.
2. ಈ ಪತ್ರಿಕೆಯು ಬಹು ಆಯ್ಕೆ ವಿಧದ ಎಪ್ಪತ್ತೈದು ಪ್ರಶ್ನೆಗಳನ್ನು ಒಳಗೊಂಡಿದೆ. 3. ಪರೀಕ್ಷೆಯ ಪ್ರಾರಂಭದಲ್ಲಿ, ಪ್ರಶ್ನೆಪ್ರಸ್ಥಿಕೆಯನ್ನು ನಿಮಗೆ ನೀಡಲಾಗುವುದು. ಮೊದಲ5 ನಿಮಿಷಗಳಲ್ಲಿ	At the commencement of examination, the question booklet will
ನೀವು ಪುಸ್ತಿಕೆಯನ್ನು ತೆರೆಯಲು ಮತ್ತು ಕೆಳಗಿನಂತೆ ಕಡ್ಡಾಯವಾಗಿ ಪರೀಕ್ಷಿಸಲು ಕೋರಲಾಗಿದೆ.	be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 ಪ್ರಶ್ನೆ ಪ್ರಸ್ತಿಕೆಗೆ ಪ್ರವೇಶಾವಕಾಶ ಪಡೆಯಲು, ಈ ಹೊದಿಕೆ ಪುಟದ ಅಂಚಿನ ಮೇಲಿರುವ ಪೇಪರ್ ಸೀಲನ್ನು ಹರಿಯಿರಿ. ಸ್ಪಿಕ್ಷರ್ ಸೀಲ್ ಇಲ್ಲದ ಅಥವಾ ತೆರೆದ ಪುಸ್ತಿಕೆಯನ್ನು 	(i) To have access to the Question Booklet, tear off the paper
ತು ಪರ್ವವರ ಸೇರನ್ನು ಹರಿಯರಿ. ಸ್ಟಿಕ್ಕರ್ ಸೀರ್ ಇಲ್ಲದ ಅಥವಾ ತರದ ಪುಸ್ತರಿಯನ್ನು ಸ್ವೀಕರಿಸಬೇಡಿ.	seal on the edge of the cover page. Do not accept a booklet without sticker seal or open booklet.
(ii) ಪುಸ್ತಿಕೆಯಲ್ಲಿನ ಪ್ರಶ್ನೆಗಳ ಸಂಖ್ಯೆ ಮತ್ತು ಪುಟಗಳ ಸಂಖ್ಯೆಯನ್ನು ಮುಖಪುಟದ ಮೇಲೆ	(ii) Tally the number of pages and number of questions
ಮುದ್ರಿಸಿದ ಮಾಹಿತಿಯೊಂದಿಗೆ ತಾಳೆ ನೋಡಿರಿ. ಪುಟಗಳು/ ಪ್ರಶ್ನೆಗಳು ಕಾಣೆಯಾದ, ಅಥವಾ ದ್ರಿಪ್ರತಿ ಅಥವಾ ಅನುಕ್ರಮವಾಗಿಲ್ಲದ ಅಥವಾ ಇತರ ಯಾವುದೇ ವ್ಯತ್ಯಾಸದ	in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions
ದೋಷಪೂರಿತ ಪುಸ್ತಿಕೆಯನ್ನು ಕೂಡಲೆ5 ನಿಮಿಷದ ಅವಧಿ ಒಳಗೆ, ಸಂವೀಕ್ಷಕರಿಂದ ಸರಿ	missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately
	by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question
ಬದಲಾಯಿಸಲಾಗುವುದಿಲ್ಲ, ಯಾವುದೇ ಹೆಚ್ಚು ಸಮಯವನ್ನೂ ಕೊಡಲಾಗುವುದಿಲ್ಲ. 4. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೂ(A), (B), (C) ಮತ್ತು (D) ಎಂದು ಗುರುತಿಸಿದ ನಾಲ್ಕು ಪರ್ಯಾಯ	Booklet will be replaced nor any extra time will be given.
ಉತ್ತರಗಳಿವೆ. ನೀವು ಪ್ರಶ್ನೆಯ ಎದುರು ಸರಿಯಾದ ಉತ್ತರದ ಮೇಲೆ, ಕೆಳಗೆ ಕಾಣಿಸಿದಂತೆ	4. Each item has four alternative responses marked (A), (B), (C) and (D). You have to darken the circle as indicated below on
ಅಂಡಾಕೃತಿಯನ್ನು ಕಪ್ಪಾಗಿಸಬೇಕು. ಉದಾಹರಣೆ: (A) (B) (D)	the correct response against each item.
ಉದಾಹರಣೆ: (A) (B) (D) (C) ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದಾಗ.	Example: A B D
್ರ 5. ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಗಳನ್ನು, ಪತ್ರಿಕೆIII ಪುಸ್ತಿಕೆಯೊಳಗೆ ಕೊಟ್ಟಿರುವOMR ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ	where (C) is the correct response.
• ಮಾತ್ರವೇ ಸೂಚಿಸತಕ್ತದ್ದು OMR ಹಾಳೆಯಲ್ಲಿನ ಅಂಡಾಕೃತಿ ಹೊರತುಪಡಿಸಿ ಬೇರೆ	5. Your responses to the question of Paper III are to be indicated in the OMR Sheet kept inside the Booklet . If you mark at any
ಯಾವುದೇ ಸ್ಥಳದಲ್ಲಿ ಗುರುತಿಸಿದರೆ, ಅದರ ಮೌಲ್ಯಮಾಪನ ಮಾಡಲಾಗುವುದಿಲ್ಲ. 6. OMR ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಕೊಟ್ಟ ಸೂಚನೆಗಳನ್ನು ಜಾಗರೂಕತೆಯಿಂದ ಓದಿರಿ.	place other than in the circles in OMR Sheet, it will not be evaluated.
7. ಎಲ್ಲಾ ಕರಡು ಕೆಲಸವನ್ನು ಪುಸ್ತಿಕೆಯ ಕೊನೆಯಲ್ಲಿ ಮಾಡತಕ್ಕದ್ದು .	6. Read the instructions given in OMR carefully.
8. ನಿಮ್ಮ ಗುರುತನ್ನು ಬಹಿರಂಗಪಡಿಸಬಹುದಾದ ನಿಮ್ಮ ಹೆಸರು ಅಥವಾ ಯಾವುದೇ	7. Rough Work is to be done in the end of this booklet. 8. If you write your name or put any mark on any part of the OMR
ಚಿಹ್ನೆಯನ್ನು , ಸಂಗತವಾದ ಸ್ಥಳ ಹೊರತು ಪಡಿಸಿ, OMR ಉತ್ತರ ಹಾಳೆಯ ಯಾವುದೇ ಭಾಗದಲ್ಲಿ ಬರೆದರೆ, ನೀವು ಅನರ್ಹತೆಗೆ ಬಾಧ್ಯರಾಗಿರುತ್ತೀರಿ.	Answer Sheet, except for the space allotted for the relevant
9. ಪರೀಕ್ಷೆಯು ಮುಗಿದನಂತರ, ಕಡ್ಡಾಯವಾಗಿ OMR ಉತ್ತರ ಹಾಳೆಯನ್ನು ಸಂವೀಕ್ಷಕರಿಗೆ	entries, which may disclose your identity, you will render yourself liable to disqualification.
ನೀವು ಹಿಂತಿರುಗಿಸಬೇಕು ಮತ್ತು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಹೊರಗೆ OMR ನ್ನು ನಿಮ್ಮೊಂದಿಗೆ	You have to return the test OMR Answer Sheet to the invigilators at the end of the examination compulsorily and must NOT
ಕೊಂಡೊಯ್ಯಕೂಡದು. 10. ಪರೀಕ್ಷೆಯ ನಂತರ, ಪರೀಕ್ಷಾಪ್ರಶೈ ಪತ್ರಿಕೆಯನ್ನು ಮತ್ತು ನಕಲು OMR ಉತ್ತರ ಹಾಳೆಯನ್ನು	carry it with you outside the Examination Hall.
ು ಪರೀಕ್ಷೆಯ ನಿರಾರ, ಪರೀಕ್ಷ್ಮಪ್ರಶ್ನ ಪತ್ರಕಾಯನ್ನು ಮತ್ತು ನಾರು ಈಗ ಗೆ ಕಾತ್ತರ ಮಾಳಿಯನ್ನು ಮನ್ನೊಂದಿಗೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.	You can take away question booklet and carbon copy of OMR Answer Sheet after the examination.
11. ನೀಲಿ/ಕಪ್ಪುಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರವೇ ಉಪಯೋಗಿಸಿರಿ.	11. Use only Blue/Black Ball point pen.12. Use of any calculator, Electronic gadgets or log table etc.,
12. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ವಿದ್ಯುನ್ಮಾನ ಉಪಕರಣ ಅಥವಾ ಲಾಗ್ ಟೇಬಲ್ ಇತ್ಯಾದಿಯ ಉಪಯೋಗವನ್ನು ನಿಷೇಧಿಸಲಾಗಿದೆ.	is prohibited.
13. ಸರಿ ಅಲ್ಲದ ಉತ್ತರಗಳಿಗೆ ಋಣ ಅಂಕ ಇರುವುದಿಲ್ಲ .	13. There is no negative marks for incorrect answers.14. In case of any discrepancy found in the Kannada
 14. ಕನ್ನಡ ಮತ್ತು ಇಂಗ್ಲೀಷ್ ಆವೃತ್ತಿಗಳ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಗಳಲ್ಲಿ ಯಾವುದೇ ರೀತಿಯ ವ್ಯತ್ಯಾಸಗಳು 	translation of a question booklet the question in English

PHYSICAL SCIENCE PAPER – III

Note: This paper contains **seventy-five (75)** objective type questions. **Each** question carries **two (2)** marks. **All** questions are **compulsory**.

1. A solution of the differential equation

$$\frac{dy}{dx} = -\frac{y^2}{x^2}$$
 is

- (A) xy = constant
- (B) y/x = constant
- (C) $\frac{1}{y} \frac{1}{x} = constant$
- (D) $\frac{1}{y} + \frac{1}{x} = constant$
- 2. The general solution of the equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} \text{ is}$$

(A)
$$y = F(x + ct) + G(\frac{x}{c} + t)$$

(B)
$$y = F(x + ct) + G(x - ct)$$

(C)
$$y = F(xc + t) + G(xc - t)$$

(D)
$$y = F(x/c + t) + G(x/c + t)$$

Where F and G are arbitrary differentiable functions.

3. The general solution of the Laplace equation in cylindrical co-ordinates

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} + \frac{\partial^2 u}{\partial z^2} = 0 \text{ is}$$

- (A) $u = \sum_{m} \left[e^{kz} (A_m \cos m\theta + B_m \sin m\theta) + e^{-kz} \times (C_m \cos m\theta + D_m \sin m\theta) \right]$ $J_m(kr)$
- $(B) \quad u = \sum_{m} \left[e^{kz} (A_m \cosh m\theta + B_m \sinh m\theta) \right. \\ \\ \left. + e^{-kz} \times (C_m \cosh m\theta + D_m \sinh m\theta) \right] \\ \\ \left. J_m(kr) \right.$
- $$\begin{split} \text{(C)} \quad u &= \sum_{m} \big\{ A_{m} \, \text{coshm} \theta \, \left(\text{coskz} + \text{sinkz} \right) \\ &+ \quad B_{m} \, \, \text{sinhm} \, \theta \, \, \left(\text{coskz} \, \, \, \text{sinkz} \right) \big\} \\ &\quad J_{m}(kr) \end{split}$$
- (D) $u = \sum_{m} \{A_{m} \cos kz e^{-im\theta} + B_{m} \sin kz e^{+im\theta} \} J_{m}(kr)$

Where A_m , B_m , C_m , D_m and k are constants and $J_m(kr)$ is Bessel function of order m.

Paper III K-2517

4. The Green's function for the Poisson equation

$$abla^2 \phi(\vec{r}) = -\frac{\rho(\vec{r})}{\epsilon_0} is$$

(A)
$$G(\vec{r}_1, \vec{r}_2) = \frac{4\pi}{\left| \vec{r}_2 - \vec{r}_1 \right|^2}$$

(B)
$$G(\vec{r}_1, \vec{r}_2) = \frac{4\pi}{\sqrt{\mid \vec{r}_2 - \vec{r}_1 \mid}}$$

(C)
$$G(\vec{r}_1, \vec{r}_2) = \frac{1}{4\pi |\vec{r}_2 - \vec{r}_1|}$$

- (D) $G(\vec{r}_1, \vec{r}_2) = \frac{1}{4\pi} e^{-|\vec{r}_2 \vec{r}_1|}$
- **5.** The Lagrange polynomial passing through the two points (x_0, y_0) and (x_1, y_1) is

(A)
$$\frac{x-x_1}{x_0-x_1}y_0 + \frac{x-x_0}{x_1-x_0}y_1$$

(B)
$$\frac{x-x_1}{x_1-x_0}y_0 + \frac{x-x_0}{x_1-x_0}y_1$$

(C)
$$\frac{x-x_1}{x_0-x_1}y_1+\frac{x-x_0}{x_1-x_0}y_0$$

(D)
$$\frac{x_1-x}{x_0-x_1}y_0+\frac{x_0-x}{x_1-x_0}y_1$$

6. If T^i_j is a second rank mixed tensor, it transforms under the co-ordinate change $\{x^i\} \to \{\overline{x}^j\}$ as

(A)
$$\overline{T}_{\beta}^{\alpha} = \frac{\partial \overline{\mathbf{x}}^{\alpha}}{\partial \mathbf{x}^{i}} \frac{\partial \overline{\mathbf{x}}^{\beta}}{\partial \mathbf{x}^{j}} T_{j}^{i}$$

(B)
$$\overline{T}^{\alpha}_{\beta} = \frac{\partial \overline{x}^{\alpha}}{\partial x^{i}} \frac{\partial x^{j}}{\partial \overline{x}^{\beta}} T^{i}_{j}$$

(C)
$$\overline{T}_{\beta}^{\alpha} = \frac{\partial x^{i}}{\partial \overline{x}^{\alpha}} \cdot \frac{\partial x^{j}}{\partial \overline{x}^{\beta}} T_{j}^{i}$$

(D)
$$\overline{T}_{\beta}^{\alpha} = \frac{\partial \overline{x}^{\alpha}}{\partial x^{i}} \cdot \frac{\partial \overline{x}^{j}}{\partial x^{\beta}} T_{j}^{i}$$

7. Let (x_0, y_0) , (x_1, y_1) , (x_n, y_n) be n points in the x - y plane then integral $\int_{x_0}^{x_n} y \, dx$ by the Simpson's rule is given by

(A)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_1 + y_3 + y_5 + ... + y_{n-1}) + 4(y_2 + y_4 + ...y_{n-2})]$$

(B)
$$\frac{h}{3}[(y_0 + y_n) + 3(y_1 + y_3 + y_5 + ... + y_{n-1}) + 4(y_2 + ... + y_{n-2})]$$

(C)
$$\frac{h}{3}[(y_0 + y_n) + 4(y_1 + y_3 + ... + y_{n-1}) + 2(y_2 + y_4 + ... + y_{n-2})]$$

(D)
$$\frac{h}{3}[(y_0 + y_n) + 2(y_1 + y_3 + ... + y_{n-1}) + 3(y_2 + y_4 + ... + y_{n-2})]$$

Where h is the equal interval between the points x_0 , x_1 , x_2 ... and n is even.

K-2517

Paper III

3

8. In the modified Euler's method, solution to the differential equation $\frac{dy}{dx} = f(x, y)$ is obtained by using the algorithm

(A)
$$y_{n+1}^{(r+1)} = y_n + \frac{h}{2} \left[f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(r)}) \right]$$

(B)
$$y_{n+1}^{(r+1)} = y_n + h [f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(r)})]$$

(C)
$$y_{n+1}^{(r+1)} = y_n + \frac{h}{2} \left[f(x_n, y_n) + 2f(x_{n+1}, y_{n+1}^{(r)}) \right]$$

(D)
$$y_{n+1}^{(r+1)} = y_n + \frac{h}{2} \left[2f(x_n, y_n) + f(x_{n+1}, y_{n+1}^{(r)}) \right]$$

Where $y_{n+1}^{(r+1)}$ is the $(r+1)^{th}$ approximation to the value of y_n

9. If the line element of a space is given $as ds^2 = 2dq^2 + 4dq_1dq_2 + 3dq_2^2, the$ metric tensor is given by

(A)
$$\begin{pmatrix} 2 & 4 \\ 4 & 3 \end{pmatrix}$$

(B)
$$\begin{pmatrix} \sqrt{2} & 2 \\ 2 & \sqrt{3} \end{pmatrix}$$

(C)
$$\begin{pmatrix} 2 & 2 \\ 2 & 3 \end{pmatrix}$$

(D)
$$\begin{pmatrix} \sqrt{2} & 4 \\ 4 & \sqrt{3} \end{pmatrix}$$

10. The phase space of a simple harmonic oscillator with mass 'm' and force constant 'k' with energy 'E' is given by the curve

(A)
$$\frac{P^2}{2m} - \frac{1}{2}kx^2 = E$$

(B)
$$\frac{P^2}{2m} + \frac{1}{2}kx^2 = E$$

(C)
$$\frac{P^2}{\sqrt{2m}} + \sqrt{\frac{k}{2}} x^2 = \sqrt{E}$$

(D)
$$\frac{P^2}{2m} + \frac{1}{2}kx^2 = E^2$$

- **11.** Assuming the fundamental Poisson bracket [q, p] = 1, evaluate the Poisson bracket $[p^2, q^2]$.
 - (A) 0
- (B) 2pq
- (C) 4pq
- (D) 4pq
- **12.** The transformation from (q_i, p_j) to (Q_i, \mathbb{P}_i) is canonical when the following condition is satisfied.

(A)
$$\sum_{i} (\mathbb{P}_{i}dQ_{i} + p_{i}dq_{i})$$
 is an exact differential

- (B) $\sum_{i} (\mathbf{IP}_{i}d\mathbf{Q}_{i} \mathbf{p}_{i}d\mathbf{q}_{i})$ is an exact differential
- (C) $\sum_{i} (\mathbf{I} P_i dq_i p_i dQ_i)$ is an exact differential
- (D) $\sum_{i} (\mathbb{P}_{i}dp_{i} Q_{i}dq_{i})$ is an exact differential

Paper III

13. For what values of α and β is the following transformation canonical ?

$$Q = q^{\alpha} \cos \beta q$$

$$\mathbf{I} \mathbf{P} = \mathbf{q}^{\alpha} \sin \beta \mathbf{q}$$

(A)
$$\alpha = \frac{1}{2}$$
, $\beta = 2$

(B)
$$\alpha = 2$$
, $\beta = \frac{1}{2}$

(C)
$$\alpha = \frac{1}{3}$$
, $\beta = 3$

(D)
$$\alpha = 3$$
, $\beta = \frac{1}{3}$

14. If $F = \sum q_i \mathbf{P}_i$ is the generating function for a canonical transformation, then under the transformation we are lead to

(A)
$$Q_i = q_i$$
, $\mathbb{P}_i = p_i$

(B)
$$Q_i = -q_i$$
, $\mathbb{P}_i = -p_i$

(C)
$$Q_i = -q_i$$
, $\mathbb{P}_i = p_i$

(D)
$$Q_i = q_i$$
, $\mathbb{P}_i = -p_i$

- **15.** The number of independent components of a four dimensional second rank symmetric tensor is
 - (A) 4
 - (B) 6
 - (C) 10
 - (D) 16

16. Find the generator of the following canonical transformation :

$$Q = p tant$$

$$\mathbb{P} = -q \cot t$$

Where t = time.

(A)
$$F = qQ \cot t$$

(B)
$$F = qQ \tan t$$

(C)
$$F = \frac{Q}{q} \cot t$$

(D)
$$F = \frac{Q}{q} \tan t$$

- **17.** If the Lagrangian of a system does not depend on time explicitly then
 - (A) The Lagrangian is conserved
 - (B) The total momentum is conserved
 - (C) The Hamiltonian is conserved
 - (D) The total angular momentum is conserved
- **18.** The Hamilton-Jacobi equation for a mass thrown up vertically from the surface of the earth is given by

(A)
$$\frac{1}{2m} \left(\frac{\partial s}{\partial z} \right)^2 - mgz = \alpha$$

(B)
$$-\frac{1}{2m} \left(\frac{\partial s}{\partial z} \right)^2 + mgz = \alpha$$

(C)
$$\frac{1}{2m} \left(\frac{\partial s}{\partial z} \right)^2 + mgz = \alpha$$

(D)
$$\frac{1}{2m} \left(\frac{\partial s}{\partial z} \right) + mgz = \alpha$$

Where m = mass of the object, α is a constant and s is the action. z = height above the ground.

K-2517

Paper III

5

- 19. The cut-off frequencies of TE_{II} mode in a rectangular metal wave guide with dimensions 2 cm × 1 cm is
 - (A) 15.88 GHz
 - (B) 16.16 GHz
 - (C) 18.2 GHz
 - (D) 16.77 GHz
- 20. The operator

$$\frac{\partial^2}{\partial x_{\cdot \cdot}^2} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} = \overline{\square}^2,$$

a four dimensional operator is known as

- (A) Laplace operator
- (B) Lorentz operator
- (C) Hermitian operator
- (D) d'Alembertian operator
- 21. If X_μ are four vector co-ordinates then match the correct options from Columns I and II.

Column I

Column II

 $(a_1) X_{\mu}$

- $(b_1) X_{\mu} + X_{\mu}$
- (a₂) Square of length (b₂) $x_1 \cdot x_2 \cdot x_3 \cdot x_4$ of four vector s^2

$$(b_3) x_1, x_2, x_3, x_4$$

 $(b_4) x_{11} x_{12}$

- (A) $a_1 \rightarrow b_1$; $a_2 \rightarrow b_2$
- (B) $a_1 \rightarrow b_3$; $a_2 \rightarrow b_4$
- (C) $a_1 \rightarrow b_3$; $a_2 \rightarrow b_1$
- (D) $a_1 \rightarrow b_4$; $a_2 \rightarrow b_1$

22. If $F_{\mu\gamma}$ with $\mu=1,2,3,4$ and $\gamma=1,2,3,4$ are the components of the electromagnetic field tensor $\{F\}$ then

the component $\left(\overline{\nabla}\times\overline{E}\right)_1 + \frac{\partial B_1}{\partial t} = 0$ of

the Maxwell's equation can be obtained

from equation $\frac{\partial F_{\lambda\mu}}{\partial x_{\gamma}} + \frac{\partial F_{\mu\gamma}}{\partial x_{\lambda}} + \frac{\partial F_{\gamma\lambda}}{\partial x_{\mu}} = 0$

with the following values of λ , μ and γ .

- (A) $\lambda = 2$, $\mu = 3$, $\gamma = 4$
- (B) $\lambda = 3, \mu = 4, \gamma = 3$
- (C) $\lambda = 4, \mu = 1, \gamma = 2$
- (D) $\lambda = 1, \mu = 2, \gamma = 1$
- 23. Potential $\vec{A}(r) = \frac{\mu_0}{4\pi} \int \frac{\vec{j}(r)}{|\vec{r} \vec{r}'|} d\tau$, the

solution of differential equation

 $\overline{\nabla}^2 \vec{A} = -\mu_0 \vec{J}$ is valid if

- (A) The charge density ρ and currents on the body are changing with time
- (B) The charge density ρ and currents on the body are homogeneous
- (C) The charges are at rest and currents are steady
- (D) Currents keep changing with time
- **24.** In case of an oscillating dipole, the radiation resistance R_r is
 - (A) Directly proportional to dipole length
 - (B) Directly proportional to square of the wavelength emitted by the dipole
 - (C) Inversely proportional to the wavelength radiated by the dipole
 - (D) Inversely proportional to the square of the wavelength radiated by the dipole

6

- **25.** In a rectangular wave guide, for dominant mode propagation
 - (A) The operating frequency must be 2 times the cut-off frequency of the guide
 - (B) The operating frequency must be same as cut-off frequency of the guide
 - (C) The cut-off frequency must be reciprocal of the operating frequency of the guide
 - (D) The cut-off frequency must be 2 times the operating frequency of the guide
- **26.** In a wave guide with conducting walls, let E_{II} and B_{II} be the components of the electric and magnetic fields parallel to the inner walls while E_{\perp} and B_{\perp} be the components normal to the inner walls. Then the correct boundary conditions are
 - (A) E_{II} and B_{II} are both zero
 - (B) $E_{II} = 0$ and $B_{\perp} = 0$
 - (C) $E_{\perp} = 0$ and $B_{||} = 0$
 - (D) $E_{\perp}=0$ and $B_{\perp}=0$
- **27.** The Poynting vector of an electric dipole oscillating along z-axis is proportional to
 - (A) $(\cos^2 \theta) \hat{r}$
 - (B) $\hat{r} \sin^2 \theta$
 - (C) $2\hat{r} \sin\theta \cos\theta$
 - (D) $\hat{r} \sin^2 \theta \cos^2 \theta$

Where \hat{r} is a unit vector along the radial direction. The dipole is located at the origin.

- 28. In the dipole approximation, the induced transition rate between two quantum states |n and |m is proportional to
 - (A) $\langle m | \vec{r} | n \rangle$
 - (B) $|\langle m | \overline{r} | n \rangle|$
 - (C) $\left|\left\langle m \mid \overline{r} \mid n\right\rangle\right|^2$
 - (D) $|\langle m | \bar{r} | n \rangle|^{\frac{3}{2}}$
- **29.** The scattering amplitude in quantum mechanics has the dimension of
 - (A) Length
 - (B) Area
 - (C) (Length) $^{\frac{1}{2}}$
 - (D) Dimensionless
- **30.** In partial waves method, the total cross section is given by

(A)
$$\sigma = \frac{4\pi}{K^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l$$

(B)
$$\sigma = \frac{4\pi}{K^2} \sum_{l=0}^{\infty} (2l+1)\cos^2 \delta_l$$

(C)
$$\sigma = \frac{4\pi}{K^2} \sum_{l=0}^{\infty} (2l+3) \sin^2 \delta_l$$

(D)
$$\sigma = \frac{4\pi}{K^2} \sum_{l=0}^{\infty} (l + \frac{1}{2}) \sin \delta_l \cos \delta_l$$

K-2517 Paper III

31. The Dirac Hamiltonian is represented as

(A)
$$\hat{H} = C(\hat{\alpha} \cdot \hat{p}) + \hat{\beta} m_0 C^2$$

(B)
$$\hat{H} = C(\hat{\alpha} \cdot \hat{p}) - \hat{\beta} m_0 C^2$$

(C)
$$\hat{H} = C^2 (\hat{\alpha} \cdot \hat{p}) + \hat{\beta} C$$

(D)
$$\hat{H} = C^2 (\hat{\beta} \cdot \hat{p}) + \hat{\alpha} m_0 C^2$$

Where $\hat{\alpha}$ and $\hat{\beta}$ are Dirac matrics.

32. Consider scattering of neutrons by a nuclear potential of range 1.2 fm. If the energy of the neutron beam is 100 MeV, the partial waves that will contribute to scattering cross-section are

(A)
$$l = 0$$
 (s-wave)

(B)
$$l = 0, 1 \text{ (s and p waves)}$$

(C)
$$l = 0, 1, 2$$
 (s, p and d-waves)

(D)
$$l = 0, 1, 2, 3$$
 (s, p, d and f waves)

33. In scattering experiments, the differential cross-section for spherically symmetric potential V(r) using Born approximation is given by

(A)
$$\frac{d\sigma(\theta)}{d\Omega} = \left(\frac{2\mu}{\hbar^2}\right)^2 \left|\int_0^\infty V(r) \left[\frac{\sin qr}{qr}\right] r^2 dr\right|^2$$

(B)
$$\frac{d\sigma(\theta)}{d\Omega} = \left(\frac{2\mu}{\hbar^2}\right)^2 \left|\int_0^\infty V(r) \left[\frac{\cos qr}{qr}\right] r^2 dr\right|^2$$

(C)
$$\frac{d\sigma(\theta)}{d\Omega} = \left(\frac{2\mu}{\hbar^2}\right)^2 \left|\int_{0}^{\infty} V(r) \left[\frac{1}{qr}\right] r^2 dr\right|^2$$

(D)
$$\frac{d\sigma(\theta)}{d\Omega} = \left(\frac{2\mu}{\hbar^2}\right)^2 \left|\int_0^\infty V(r) r^2 dr'\right|^2$$

34. If α_x , α_y , α_z and β denote the Dirac matrices, then which of the following is correct?

(A)
$$\alpha_i^2 = 1$$
, $\beta^2 = -1$, trace $\beta = +1$

(B)
$$\alpha_i^2 = -1$$
, $\beta^2 = 1$, trace $\beta = 0$

(C)
$$\alpha_i^2 = 1$$
, $\beta^2 = 1$, trace $\beta = 0$

(D)
$$\alpha_i^2 = 1$$
, $\beta^2 = 1$, trace $\beta = -1$

Where α_{i} is any one of $\alpha_{\text{x}},\alpha_{\text{y}}$ and α_{z} .

35. The Klein-Gordon equation for a free particle of rest mass 'm' is given by

(A)
$$\hbar^2 \frac{\partial^2 \psi}{\partial t^2} = \hbar^2 c^2 \nabla^2 \psi + m^2 c^4 \psi$$

(B)
$$-\hbar^2 \frac{\partial^2 \psi}{\partial t^2} = \hbar^2 c^2 \nabla^2 \psi + m^2 c^4 \psi$$

(C)
$$-\hbar^2 \frac{\partial^2 \psi}{\partial t^2} = -\hbar^2 c^2 \nabla^2 \psi + m^2 c^4 \psi$$

(D)
$$\hbar^2 \frac{\partial^2 \Psi}{\partial t^2} = -\hbar^2 c^2 \nabla^2 \Psi - m^2 c^4 \Psi$$

36. The transition rate between two quantum states $|m\rangle$ and $|n\rangle$ due to spontaneous emission is proportional to

(A)
$$W_{mn}^3 |\langle m | \overline{r} | n \rangle|^2$$

(B)
$$W_{mn}^2 |\langle m | \overline{r} | n \rangle|^2$$

(C)
$$W_{mn} |\langle m | \overline{r} | n \rangle|^2$$

(D)
$$\frac{1}{W_{mn}^2} \left| \left\langle m \right| \vec{r} \left| n \right\rangle \right|^2$$

Where
$$W_{mn} = (E_m - E_n)/\hbar$$

K-2517

Paper III 8

- **37.** The ratio of Einstein coefficients A and B for laser is proportional to
 - (A) γ
 - (B) γ²
 - (C) γ³
 - (D) γ⁴
- **38.** The energy separation between two consecutive stokes lines in Raman scattering depends on
 - (A) Energy separation between vibrational levels in the excited state
 - (B) Wavelength of the incident light
 - (C) Energy separation between vibrational levels in the ground state
 - (D) Intensity of the incident light
- **39.** Which of the following molecules does not exhibit a rotational spectrum ?
 - (A) H
 - (B) CO
 - (C) HCI
 - (D) HBr
- **40.** Wavelength of $\lambda = 1.064 \ \mu m$ is emitted by
 - (A) He Ne laser
 - (B) CO₂ laser
 - (C) Ruby laser
 - (D) Nd-YAG laser
- **41.** The typical energy of the rotational modes in a polyatomic molecule like NH₃ is
 - (A) 10⁶ eV
 - (B) 10^{-3} eV
 - (C) 10^{-1} eV
 - (D) 1 eV

- **42.** The alternation of intensities observed in the pure rotational Raman spectrum of homonuclear diatomic molecules is due to
 - (A) Isotope effect
 - (B) Nuclear spin
 - (C) Electron spin
 - (D) Doppler effect
- **43.** Ionization energy for hydrogen atom, initially at n = 3 excited state is
 - (A) 13.6 eV
 - (B) + 13.6 eV
 - (C) -3.4 eV
 - (D) + 1.51 eV
- 44. Selection rule for Raman spectrum is
 - (A) $\Delta J = 0$
 - (B) $\Delta J = \pm 1$
 - (C) $\Delta J = \pm 2$
 - (D) $\Delta J = \pm 3$
- **45.** The Red light emitted by a He-Ne laser is due to transition between
 - (A) He energy levels
 - (B) He and Ne energy levels
 - (C) Ne energy levels
 - (D) Impurity energy levels
- **46.** The proton and neutron have almost same mass because
 - (A) Up and down quarks have the same spin
 - (B) Masses of the up and down quarks are similar
 - (C) Both are colorless
 - (D) Both are part of nucleus

K-2517 9 Paper III

- **47.** If two nuclei of masses m₁ and m₂ are fused to form a nucleus of mass m and some energy is released, then
 - (A) $(m_1 + m_2) > m$
 - (B) $(m_1 + m_2) < m$
 - (C) $(m_1 + m_2) = m$
 - (D) $m_1 m_2 = m$
- **48.** The property of "strangeness" was proposed by
 - (A) Gamow and Teller
 - (B) Weisskopf
 - (C) Wigner
 - (D) Gellmann and Nishijima
- **49.** If the mass of the exchanged particle is m, then the range of the force is approximately equal to
 - (A) $\frac{\hbar c}{m}$
 - (B) $\frac{\hbar}{mc}$
 - (C) $\frac{\hbar m}{c}$
 - (D) hmc
- **50.** The following reaction is not allowed by strong interaction :

$$d + d \rightarrow {}^{4}He + \pi^{\circ}$$

That is because, in the reaction

- (A) Parity is not conserved
- (B) Angular momentum is not conserved
- (C) Isospin is not conserved
- (D) Strangeness is not conserved

- **51.** In the shell model with harmonic oscillator potential, closed shells occur for N or Z equal to
 - (A) $\sum_{l} (2l + 1)$
 - (B) $\sum_{l} 2(2l+1)$
 - (C) $\sum_{l} 2(l+1)$
 - (D) $\sum 2(2l+1)^2$

Where l = 0, 1, 2,

- **52.** The ratio of the cross sections $\frac{\sigma(n+p\to\pi^\circ+d)}{\sigma(p+p\to\pi^++d)}$ is equal to
 - (A) 1
 - (B) $\frac{3}{4}$
 - (C) $\frac{1}{2}$
 - (D) $\frac{1}{4}$
- **53.** Which of the following is not a moderator in an atomic pile ?
 - (A) Heavy water
 - (B) Graphite
 - (C) Beryllium
 - (D) Boron

54. Match the quark-antiquark composition of the following particles.

Particle Quark-antiquark composition

- 1. K⁺
- $a. u\overline{d}$
- 2. K°
- b. us
- 3. π⁺
- c. $\frac{1}{\sqrt{2}} \left(u \overline{u} d \overline{d} \right)$
- 4. π°
- $d. d\overline{s}$
- (A) 1 b, 2 a, 3 c, 4 d
- (B) 1-d, 2-c, 3-a, 4-b
- (C) 1-b, 2-d, 3-a, 4-c
- (D) 1-c, 2-b, 3-d, 4-a
- **55.** The orientational polarizability per molecule in a polyatomic gas is given by
 - (A) $\frac{\mu_{\rm m}}{3 \, k_{\rm B} T}$
 - (B) $\frac{\mu_m^2}{3 k_B T}$
 - (C) $\frac{\mu_m^3}{3 k_B T}$
 - (D) $\frac{\mu_m^2}{3 k_B T^2}$
- **56.** In an allowed band of semiconductor, the effective mass m* of the electron is infinite
 - (A) at the bottom of energy band
 - (B) at the top of the energy band
 - (C) in the middle of the energy band
 - (D) never

- **57.** The Fermi level of an n-type semiconductor is
 - (A) Close to the valence band
 - (B) At the middle of the band gap
 - (C) Inside the conduction band
 - (D) Close to the conduction band
- **58.** Magnetic susceptibility of a perfect diamagnet in CGS units is
 - (A) 0
 - (B) $\frac{+1}{4\pi}$
 - (C) $\frac{-1}{4\pi}$
 - (D) Infinity
- 59. In Bose-Einstein condensation at critical temperature, the de Broglie wavelength of particles constituting the medium should be equal to
 - (A) Average particles distance
 - (B) Critical volume of particles
 - (C) Planck's constant
 - (D) Chemical potential
- **60.** Bose-Einstein condensation temperature T_c refers to the temperature below which
 - (A) An assembly of Bose gas condenses to the liquid state
 - (B) There is an appreciable occupation of the ground state in an electron system
 - (C) There is a significantly large occupancy of the ground state in a system of bosons
 - (D) The bosons essentially behave like fermions

K-2517 Paper III

- **61.** The total number of (Na⁺ + Cl⁻) ions per unit cell is
 - (A) 2
 - (B) 4
 - (C) 6
 - (D) 8
- **62.** Dielectric function \in (w) at frequency w for free electron gas is equal to

(A)
$$1 - \frac{4\pi ne^2}{mw^2}$$

(B)
$$1 + \frac{4\pi ne^2}{mw^2}$$

(C)
$$\sqrt{\frac{4\pi ne^2}{mw^2}}$$

(D)
$$\sqrt{\frac{\text{mw}^2}{4\pi\text{ne}^2}}$$

- **63.** Which of the following gauge can measure the pressure in the range of 10^{-3} to 10^{-10} Torr. ?
 - (A) McLeod Gauge
 - (B) Pirani Gauge
 - (C) Penning Gauge
 - (D) Ionization Gauge
- 64. An analog transducer has range of 0 – 10 V. How many bits of A/D converter is required to get the resolution of 5 mV?
 - (A) 10
 - (B) 9
 - (C) 11
 - (D) 8

- **65.** Which of the following radiation detectors has poor energy resolution?
 - (A) G. M. Counter
 - (B) Scintillation detector
 - (C) Si(Li)/Ge(Li)
 - (D) Si at room temperature
- **66.** The Johnson Noise in resistor R is given by

(A)
$$\overline{V}_{rms}^2 = (4KTR\Delta f)$$

(B)
$$\overline{V}_m = (2qI\Delta f)^{\frac{1}{2}}R$$

(C)
$$\overline{V}_{rms} = \frac{A}{f^2}$$

(D)
$$\overline{V}_{rms} = A_f$$

- **67.** Floating voltage signals should be amplified by
 - (A) OP-AMP in inverting configuration
 - (B) OP-AMP in non-inverting configuration
 - (C) Instrumentation amplifier
 - (D) Buffer amplifier
- 68. A certain op-amp has an open loop gain of 200000 and a common mode gain of2. The common mode rejection ratio (CMMR) of the op-amp is
 - (A) 20 dB
 - (B) 40 dB
 - (C) 60 dB
 - (D) 100 dB

Paper III (12) K-2517

- **69.** Which of the following amplifier is used to extract signal one million times smaller than noise component?
 - (A) Instrumentation amplifier
 - (B) Buffer amplifier
 - (C) Pre-amplifier
 - (D) Lock-in-amplifier
- **70.** The number of atoms per unit cell of the reciprocal of bcc structure is
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4
- **71.** Einstein's relation connecting the coefficient of diffusion with mobility is
 - (A) $\frac{KT}{e}\mu$
 - (B) $\frac{KP}{e}\mu$
 - (C) $\frac{eT}{K}\mu$
 - (D) $\frac{KT^2}{e}\mu$

- **72.** Which of the following radiation has the most penetrating power?
 - (A) α particles
 - (B) β particles
 - (C) γ rays
 - (D) Neutrons
- **73.** A transient response of a control system can be checked by using
 - (A) Sinusoidal wave form
 - (B) Square wave form
 - (C) Triangular wave form
 - (D) Ramp wave form
- **74.** To eliminate noise due to building vibrations, one of the following filters is used. Tick the right answer.
 - (A) Low pass filter
 - (B) High pass filter
 - (C) Band pass filter
 - (D) Band stop filter
- **75.** The crystal unit cell with parameters a = 3.1 Å, b = 3.1 Å, c = 5.2 Å and $\alpha = \beta = \gamma = 90^{\circ}$ belongs to
 - (A) Cubic
 - (B) Triclinic
 - (C) Monoclinic
 - (D) Tetragonal

ಚಿತ್ತು ಬರಹಕ್ಕಾಗಿ ಸ್ಥಳ Space for Rough Work

ಚಿತ್ತು ಬರಹಕ್ಕಾಗಿ ಸ್ಥಳ Space for Rough Work

ಚಿತ್ತು ಬರಹಕ್ಕಾಗಿ ಸ್ಥಳ Space for Rough Work